Abstract
Many major diseases of the retina often show symptoms of lesions in the fundus of the eye. The extraction of blood vessels from retinal fundus images is essential to assist doctors. Some of the existing methods do not fully extract the detailed features of retinal images or lose some information, making it difficult to accurately segment capillaries located at the edges of the images. In this paper, we propose a multi-scale retinal vessel segmentation network (SCIE_Net) based on skip connection information enhancement. Firstly, the network processes retinal images at multiple scales to achieve network capture of features at different scales. Secondly, the feature aggregation module is proposed to aggregate the rich information of the shallow network. Further, the skip connection information enhancement module is proposed to take into account the detailed features of the shallow layer and the advanced features of the deeper network to avoid the problem of incomplete information interaction between the layers of the network. Finally, SCIE_Net achieves better vessel segmentation performance and results on the publicly available retinal image standard datasets DRIVE, CHASE_DB1, and STARE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.