Abstract

Skin sensitization is an important toxicological endpoint for chemical hazard determination and safety assessment. Prediction of chemical skin sensitizer had traditionally relied on data from rodent models. The development of the adverse outcome pathway (AOP) and associated alternative in vitro assays have reshaped the assessment of skin sensitizers. The integration of multiple assays as key events in the AOP has been shown to have improved prediction performance. Current computational models to predict skin sensitization mainly based on in vivo assays without incorporating alternative in vitro assays. However, there are few freely available databases integrating both the in vivo and the in vitro skin sensitization assays for development of AOP-based skin sensitization prediction models. To facilitate the development of AOP-based prediction models, a skin sensitization database named SkinSensDB has been constructed by curating data from published AOP-related assays. In addition to providing datasets for developing computational models, SkinSensDB is equipped with browsing and search tools which enable the assessment of new compounds for their skin sensitization potentials based on data from structurally similar compounds. SkinSensDB is publicly available at http://cwtung.kmu.edu.tw/skinsensdb.

Highlights

  • Skin sensitization associated with allergic contact dermatitis (ACD) is the second most common occupational illness accounting for 10–15% of all occupational disease worldwide [1]

  • A typical record of SkinSensDB is shown in Fig. 1 where basic information of chemicals and associated skin sensitization assays can be found

  • Browse and search tools were implemented to facilitate the exploration of skin sensitization data

Read more

Summary

Introduction

Skin sensitization associated with allergic contact dermatitis (ACD) is the second most common occupational illness accounting for 10–15% of all occupational disease worldwide [1]. Skin sensitization is thereby an important toxicological endpoint in chemical safety assessment and a focus in regulatory decision making. Chemical sensitizers, which may be detergents, preservatives, or fragrances in household and personal care products or active ingredients, impurities from synthetic process and industrial materials in the pharmaceutical products, act as haptens binding to protein molecules. These chemically modified proteins may trigger T cellmediated immune reactions and lead to ACD [3].

Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.