Abstract
In previous papers, a geometric framework has been developed to describe non-conservative field theories as a kind of modified Lagrangian and Hamiltonian field theories. This approach is that of k-contact Hamiltonian systems, which is based on the k-symplectic formulation of field theories as well as on contact geometry. In this work we present the Skinner–Rusk unified setting for these kinds of theories, which encompasses both the Lagrangian and Hamiltonian formalisms into a single picture. This unified framework is specially useful when dealing with singular systems, since: (i) it incorporates in a natural way the second-order condition for the solutions of field equations, (ii) it allows to implement the Lagrangian and Hamiltonian constraint algorithms in a unique simple way, and (iii) it gives the Legendre transformation, so that the Lagrangian and the Hamiltonian formalisms are obtained straightforwardly. We apply this description to several interesting physical examples: the damped vibrating string, the telegrapher's equations, and Maxwell's equations with dissipation terms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.