Abstract

Skin-derived precursors (SKPs) are self-renewing and pluripotent adult stem cell sources that have been successfully obtained and cultured from adult tissues of rodents and humans. Skin-derived precursor Schwann cells (SKP-SCs), derived from SKPs when cultured in a neuro stromal medium supplemented with some appropriate neurotrophic factors, have been reported to play a neuroprotective effect in the peripheral nervous system. This proves our previous studies that SKP-SCs’ function to bridge sciatic nerve gap in rats. However, the function of SKP-SCs in Parkinson disease (PD) remains unknown. This study was aimed to investigate the possible neuroprotective effects of SKP-SCs in 6-OHDA-induced Parkinson’s disease (PD) model. Our results showed that the treatment with SKP-SCs prevented SH-SY5Y cells from 6-OHDA-induced apoptosis, accompanied by modulation of apoptosis-related proteins (Bcl-2 and Bax) and the decreased expression of active caspase-3. Furthermore, we confirmed that SKP-SCs might exert protective effects and increase the mitochondrial membrane potential (MMP) through PI3K/AKT/Bcl-2 pathway. Taken together, our results demonstrated that SKP-SCs protect against 6-OHDA-induced cytotoxicity through PI3K/AKT/Bcl-2 pathway in PD model in vitro, which provides a new theoretical basis for the treatment of PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call