Abstract

Chronic wound is one of the major challenges in medicine and imposes a heavy financial burden on the healthcare of different countries. Diabetic foot ulcers as one of the important examples for chronic wounds can lead to lower limb amputation, disability, and death in diabetics. In this regard, novel technology with low side effects got attention in recent years. Low-dose photodynamic therapy (LDPDT) is one of the noninvasive techniques that can be considered for wound healing in diabetic wounds. In this experiment, we aim to study the effect of LDPDT on diabetic rats' wound healing and compare it to healthy rats. In this in vitro experimental study, 32 male rats were used. Rats in both normal and diabetic (streptozotocin injection) groups after being wounded (two wounds [0.8×0.8cm]) on the back of each rat were randomly divided into four groups, including the control group (without treatment), radiation-only (660nm-1 J/cm2 ) group, 5-ALA-only (1µg/mL) group, and LDPDT-recipient group. The procedure has been done for 2days, and at the end of Days 3, 7, 14, and 21, the wound sample was sent to the histopathology laboratory, and the wound size and tissue indices in these groups were evaluated by histology and microscopy techniques. The impact of low concentrations of 5-ALA and low irradiation energy density in both normal and diabetic rats were positive, which accelerated the wound-healing process as seen in the histology study. In diabetic rats treated with only radiation and LDPDT, the process of epithelial regeneration, collagen production, reduction of mast cells, and production of follicles was more as compared to the normal group. The results suggest that LDPDT can have a positive impact on the diabetic rat model wound healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.