Abstract

Non-Hermitian quantum many-body systems are a fascinating subject to be explored. Using the generalized density matrix renormalisation group method and complementary exact diagonalization, we elucidate the many-body ground states and dynamics of a 1D interacting non-Hermitian Aubry-Andre-Harper model for bosons. We find stable ground states in the superfluid and Mott insulating regimes under wide range of conditions in this model. We reveal a skin superfluid state induced by the non-Hermiticity from the nonreciprocal hopping. We investigate the topology of the Mott insulating phase and find its independence of the non-Hermiticity. The topological Mott insulators in this non-Hermitian system are characterized by four equal Chern numbers and a quantized shift of biorthogonal many-body polarizations. Furthermore, we show generic asymmetric expansion and correlation dynamics in the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call