Abstract

The main objective of this research work was to fabricate and evaluate adhesive matrix-type transdermal patches of buflomedil hydrochloride, employing different ratios of pressure sensitive adhesives (PSAs) by solvent casting technique. The adhesive matrix-type transdermal patches were evaluated by their in vitro physicochemical properties such as thickness, moisture content, weight variation, drug content uniformity, etc. The effects of PSAs ratio, drug loading, and concentration of permeation enhancer were evaluated thoroughly. Ex vivo skin permeation studies with kinetic modeling of adhesive matrix patches were systematically evaluated. Based on the above observations, the best optimized buflomedil hydrochloride-loaded adhesive matrix-type transdermal patch was further characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction study, and differential scanning calorimetry analyses. Drug containing adhesive matrix patches showed sustained release property without showing any incompatibility in adhesive matrix system. Hence, adhesive matrix-type transdermal patches of buflomedil hydrochloride can be used as a potential carrier for sustained transdermal delivery of hydrophilic drugs like buflomedil hydrochloride.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call