Abstract

The skin offers various benefits and potential for peptide delivery if its barrier performance can be reduced temporarily and reversibly. As peptides possess high molecular weight, hydrophilic nature (in most cases), and ionizable groups in the structure, their skin delivery is highly challenging. Apart from this, they are susceptible to the proteolytic enzymes in the skin. Anti-wrinkle peptides, like other peptides, suffer from insufficient skin permeability, while most of them must penetrate deep in the skin to present their efficacy. Although the cellular studies indicate the effectiveness of such peptides, without the ability to permeate the skin sufficiently, this efficacy is useless. Poor skin permeability of anti-wrinkle peptides has led to ongoing research for finding feasible and noninvasive enhancement methods that would be desirable for consumers of cosmetic products. In this paper, the possibility of skin permeation of anti-wrinkle peptides as well as the chemical, physical, and encapsulation approaches that have been employed to date to increase permeability of these difficult molecules are thoroughly reviewed. Most anti-wrinkle peptides are not appropriate candidates for skin permeation and the use of enhancement methods is essential to increase their permeability. To do so, only some permeability enhancement approaches have been applied so far, including chemical modification with hydrophobic moieties or cell penetrating peptides, metal complexation, chemical permeation enhancers, iontophoresis, microneedles, and encapsulation in nanocarriers. The results of studies published on the skin permeability of anti-wrinkle peptides carnosine, GHK, PKEK, GEKG, GQPR, and KTTKS indicate that the skin permeability of these peptides can be successfully increased. Although the skin permeability of most anti-wrinkle peptides is not high enough and most anti-wrinkle peptides might not reach their targets in the skin at right concentrations, their permeability can be increased to therapeutic concentrations using various enhancement approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.