Abstract

Knowledge concerning the health and welfare of fish is important to conserve species diversity. Fish mucosal surfaces, and particularly the skin, are of utmost importance to protect the integrity and homeostasis of the body and to prevent skin infections by pathogens. We performed three trials simulating different environmental and anthropogenic challenges: fish capture (air exposure), bacterial infection and fasting, with the aim of evaluating epidermal mucus as a non-invasive target of studies in fish. In this initial approach, we selected three well-known marine species: meagre (Argyrosomus regius), European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) for our study. Mucus viscosity was measured in order to determine its rheological properties, and mucus metabolite (glucose, lactate, protein and cortisol) levels were analysed to establish their suitability as potential biomarkers. Skin mucus appeared as a viscous fluid exhibiting clearly non-Newtonian behaviour, with its viscosity being dependent on shear rate. The highest viscosity (p < 0.05) was observed in sea bream. Mucus metabolites composition responded to the different challenges. In particular, glucose increased significantly due to the air exposure challenge in meagre; and it decreased during food deprivation in sea bream by a half (p < 0.05). In contrast, mucus protein only decreased significantly after pathogenic bacterial infection in sea bass. In addition, mucus lactate immediately reflected changes closely related to an anaerobic condition; whereas cortisol was only modified by air exposure, doubling its mucus concentration (p < 0.05). The data provided herein demonstrate that mucus metabolites can be considered as good non-invasive biomarkers for evaluating fish physiological responses; with the glucose/protein ratio being the most valuable and reliable parameter. Determining these skin mucus metabolites and ratios will be very useful when studying the condition of critically threatened species whose conservation status prohibits the killing of specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.