Abstract

Approximately 95% of breast cancer (BC) patients receiving radiotherapy (RT) develop varying degrees of radiation dermatitis (RD), which can greatly affect the patient's quality of life and aesthetics. Severe acute RD can lead to interruption or delay of RT. Currently, there is no consensus on the prevention and management of RD. The skin microbiota (SM), which are mainly composed of bacteria and fungi, are essential for skin homeostasis and microbial dysbiosis is correlated with the onset and progression of many common skin diseases. However, to date, research on the role of the SM in RD remains scarce. This prospective, longitudinal study aims to analyze the association of SM with RD. We collected 200 SM samples both before and after RT from the region in the irradiated chest wall of 100 BC patients receiving RT after reconstructive surgery and samples from the corresponding region in the contralateral breast for bacterial 16S and fungal ITS (internal transcribed spacer) rRNA sequencing. Acute RD was graded according to the Toxicity Criteria of the Radiation Therapy Oncology Group (RTOG). Patients were divided into no or mild dermatitis (N/MD, RTOG grade 0 or 1) and severe dermatitis (SD, RTOG grade 2 and above). The compositional differences across groups were compared using STAMP and high-dimensional class comparisons by linear discriminant analysis of effect size (LEfSe). Differences in metabolic function between groups were predicted by the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) method. Significant differences were observed in the diversity and composition of the SM between N/MD and SD both before and after RT. Analysis of bacterial 16S sequencing (n = 89, 63 N/MD, 26 SD) showed significantly higher relative abundance of particular taxa such as Ralstonia, Truepera, Methyloversatilis genera and lower abundance of particular taxa including Staphylococcus, Corynebacterium genera in N/MD patients. Besides, analysis of fungal ITS sequencing (n = 71, 53 N/MD, 18 SD) showed significantly higher relative abundance of particular taxa such as Hypocreaceae family and lower abundance of particular taxa such as Sporidiobolus genus in N/MD patients. Pathways including fatty acid synthesis were predicted to be enriched in N/MD patients. The SM and pathway markers were identified in this study to be associated with the severity of acute RD in BC patients undergoing RT after reconstructive surgery. More patient data is needed to verify the current findings and the results of metagenomic, metatranscriptomic, and metabolomic analyses will further mine key biomarkers at the compositional and functional level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call