Abstract

Segmentation of skin lesions from dermoscopic images plays an essential role in the early detection of skin cancer. However, skin lesion segmentation is still challenging due to artifacts such as indistinguishability between skin lesion and normal skin, hair on the skin, and reflections in the obtained dermoscopy images. In this study, an edge attention network (ET-Net) combining edge guidance module (EGM) and weighted aggregation module is added to the 2D volumetric convolutional neural network (Vnet 2D) to maximize the performance of skin lesion segmentation. In addition, the proposed fusion model presents a new fusion loss function by combining balanced binary cross-entropy (BBCE) and focal Tversky loss (FTL). The proposed model has been tested on the ISIC 2018 Task 1 Lesion Boundary Segmentation Challenge dataset. The proposed model outperformed the state-of-the-art studies as a result of the tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.