Abstract

Hydrogel-based flexible electronic components have become the optimal solution to address the rigidity problem of traditional electronics in health management. In this study, a multipurpose hydrogel is introduced, which is formed by combining a dual-network consisting of physical (chitosan, polyvinyl alcohol (PVA)) and chemical (poly(isopropyl acrylamide (NIPAM)-co-acrylamide (AM))) cross-linking, along with signal conversion fillers (eutectic gallium indium (EGaIn), Ti3C2 MXene, polyaniline (PANI)) for responding to external stimuli. Multiple sensing of dynamic and static signals is permissible for it. The strain sensor based on the hydrogel exhibits up to a 1000% resistance change within a 400% stretch range, and significant capacitance variations are observed upon touch. The temperature sensor yields a sensitivity of ≈-2.9%°C-1 at 20-40°C and ≈65%°C-1 at 0-20°C. The pH sensor responds with a sensitivity of near -13.68mV pH-1. A paper-based triboelectric nanogenerator can be assembled to collect action energy at 83mW m-2. The skin contact interface is kept in good condition owing to its 3D-printability, controllable antibacterial properties, along high cell survival rate. This multifunctional hydrogel holds promise in facilitating the integration of diagnosis and maintenance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.