Abstract

Mechanosensation electronics (or Electronic skin, e-skin) consists of mechanically flexible and stretchable sensor networks that can detect and quantify various stimuli to mimic the human somatosensory system, with the sensations of touch, heat/cold, and pain in skin through various sensory receptors and neural pathways. Here we present a skin-inspired highly stretchable and conformable matrix network (SCMN) that successfully expands the e-skin sensing functionality including but not limited to temperature, in-plane strain, humidity, light, magnetic field, pressure, and proximity. The actualized specific expandable sensor units integrated on a structured polyimide network, potentially in three-dimensional (3D) integration scheme, can also fulfill simultaneous multi-stimulus sensing and achieve an adjustable sensing range and large-area expandability. We further construct a personalized intelligent prosthesis and demonstrate its use in real-time spatial pressure mapping and temperature estimation. Looking forward, this SCMN has broader applications in humanoid robotics, new prosthetics, human–machine interfaces, and health-monitoring technologies.

Highlights

  • Mechanosensation electronics consists of mechanically flexible and stretchable sensor networks that can detect and quantify various stimuli to mimic the human somatosensory system, with the sensations of touch, heat/cold, and pain in skin through various sensory receptors and neural pathways

  • E-skin, which is capable of sensing different stimuli, is likely to boost emergence of the Internet of ‘actions’ (IoA), as we suppose, which would be a new era of health care, medical science, and robotics

  • Skin-inspired highly stretchable and conformable matrix networks have been fabricated that integrate temperature, strain

Read more

Summary

Introduction

Mechanosensation electronics (or Electronic skin, e-skin) consists of mechanically flexible and stretchable sensor networks that can detect and quantify various stimuli to mimic the human somatosensory system, with the sensations of touch, heat/cold, and pain in skin through various sensory receptors and neural pathways. Consisting of mechanically flexible and stretchable sensor networks, mechanosensation electronics (electronic skin, e-skin)[1,2,3,4,5,6] has been developed to mimic the human somatosensory system by detecting and quantifying various stimuli in the ambient environment and have attracted tremendous attention for their revolutionary applications in robotics[7,8], prosthetics[4,9,10], and health-monitoring technologies[3,11,12]. We present a skin-inspired highly stretchable and conformable matrix network (SCMN) as a multi-sensory e-skin that is capable of detecting temperature, in-plane strain, relative humidity (RH), ultraviolet (UV) light, magnetic field, pressure, and proximity provides to realize simultaneous multi-stimulus sensing and exhibits an adjustable sensing range and large-area expandability, as well as potentially suitable for high-density three-dimensional (3D) integration scheme.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call