Abstract

Atopic dermatitis (AD) is an inflammatory skin disorder occurring in genetically predisposed individuals with a systemic T(H)2 bias. Atopic dermatitis patients exposed to the smallpox vaccine, vaccinia virus (VV), occasionally develop eczema vaccinatum (EV), an overwhelming and potentially lethal systemic infection with VV. To establish a murine model of EV and examine the effects of skin inflammation on VV immunity. The skin of RelB(-/-) mice, like that of chronic AD lesions in humans, exhibits thickening, eosinophilic infiltration, hyperkeratosis, and acanthosis. RelB(-/-) and wild-type (WT) control mice were infected with VV via skin scarification. Viral spread, cytokine levels, IgG2a responses and VV-specific T cells were measured. Cutaneously VV-infected RelB(-/-), but not WT mice, exhibited weight loss, markedly impaired systemic clearance of the virus and increased contiguous propagation from the inoculation site. This was associated with a dramatically impaired generation of IFN-gamma-producing CD8(+) vaccinia-specific T cells along with decreased secretion of IFN-gamma by VV-stimulated splenocytes. The T(H)2 cytokines-IL-4, IL-5, IL-13, and IL-10-on the other hand, were overproduced. When infected intraperitoneally, RelB(-/-) mice generated robust T cell responses with good IFN-gamma production. Allergic inflammation in RelB(-/-) mice is associated with dysregulated immunity to VV encountered via the skin. We speculate that susceptibility of AD patients to overwhelming vaccinia virus infection is similarly related to ineffective T cell responses. The susceptibility of patients with AD to EV following cutaneous contact with VV is related to ineffective antiviral immune responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.