Abstract
Ablative lasers have been used for cutaneous surgery for greater than two decades since they can remove skin and skin lesions bloodlessly and efficiently. Because full-thickness skin wounds created after thermal laser ablation may require skin grafting in order to heal, we have examined the effect of the residual laser-induced thermal damage in the wound bed on subsequent skin graft take and healing. In a pig model, four different pulsed and continuous-wave lasers with varying wavelengths and radiant energy exposures were used to create uniform fascial graft bed thermal damage of approximately 25, 160, 470, and 1100 microns. Meshed split-thickness skin graft take and healing on the thermally damaged fascial graft beds were examined on a gross and microscopic level on days 3 and 7, and then weekly up to 42 days. Laser-induced thermal damage on the graft bed measuring greater than 160 +/- 60 microns in depth significantly decreased skin graft take. Other deleterious effects included delayed graft revascularization, increased inflammatory cell infiltrate at the graft-wound bed interface, and accelerated formation of hypertrophied fibrous tissue within the graft bed and underlying muscle. Ablative lasers developed for cutaneous surgery should create less than 160 +/- 60 microns of residual thermal damage to permit optimal skin graft take and healing. Pulsed carbon dioxide and 193-nm excimer lasers may be valuable instruments for the removal of full-thickness skin, skin lesions, and necrotic tissue, since they create wound beds with minimal thermal damage permitting graft take comparable to that achieved with standard surgical techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.