Abstract

Little is known about the impact of different microbial signals on skin barrier organ function and the interdependency between resident microflora and pathogenic microorganisms. This study shows that commensal and pathogenic staphylococci differ in their ability to induce expression of antimicrobial peptides/proteins (AMPs) and activate different signaling pathways in human primary keratinocytes. Whereas secreted factors of skin commensals induce expression of the AMPs HBD-3 and RNase7 in primary human keratinocytes via Toll-like receptor (TLR)-2, EGFR, and NF-κB activation, those of pathogenic staphylococci activate the mitogen-activated protein kinase and phosphatidylinositol 3-kinase/AKT signaling pathways and suppress NF-κB activation. Interestingly, commensal bacteria are able to amplify the innate immune response of human keratinocytes to pathogens by increased induction of AMP expression and abrogation of NF-κB suppression, suggesting that the two activation pathways can act in a synergistic way. These data indicate that commensal and pathogenic microorganisms evolved specific mechanisms to modulate innate immunity of the skin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.