Abstract

Skin cancers are one of the most common cancers in the world. Early detections and treatments of skin cancers can greatly improve the survival rates of patients. In this paper, a skin lesions classification system is developed with deep convolutional neural networks of ResNet50, which may help dermatologists to recognize skin cancers earlier. We utilize the ResNet50 as a pre-trained model. Then, by transfer learning, it is trained on our skin lesions dataset. Image preprocessing and dataset balancing methods are used to increase the accuracy of the classification model. In classification of skin diseases, our model achieves an overall accuracy of 83.74% on nine-class skin lesions. The experimental results show an impressive effect of the ResNet50 model in finegrained skin lesions classification and skin cancers recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.