Abstract
This paper presents the application of a numerical approach known as proper generalized decomposition (PGD) to calculate the per-unit length (PUL) ac resistance of rectangular conductors. PGD has been successfully used in areas such as fluid mechanics and biomedical applications. It solves a partial differential equation (PDE) by decomposing the answer into a set of unknown one-dimensional (1D) functions in an iterative approach until it reaches a predetermined convergence. In this paper, a frequency-dependent meshing scheme is employed in the PGD technique at each frequency to properly take skin and proximity effects into account. One of the main advantages of PGD over traditional numerical approaches such as finite element or finite difference methods is that it confines the answers within a set of one-dimensional functions, which require fewer computational resources. Different examples of single and multiple rectangular conductors are considered to study skin and proximity effects. The PGD results are compared with those obtained using a commercial finite element method (FEM) software to verify the accuracy of the model. This approach can be used in applications such as white box modeling of transformers, EMC analysis, hairpin winding design used in electric vehicles, and busbar simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.