Abstract

Traditionally, research on stepped spillway hydraulics has been focused on the air-water flow region but for the hydraulic design of small embankment dams experiencing relatively large overtopping flows, the nonaerated region can be very important. Empirical formulas are presented for predicting skimming flow properties upstream of the point of inception of air entrainment for 1V:2H sloping stepped spillways, and the location and flow depth at the point of inception. Particular emphasis is placed on the clear-water depth, velocity distribution, and the energy dissipation characteristics in the developing nonaerated flow region. The velocity distribution is well described by a power law. The normalized clear-water depth and the normalized specific energy varied with the relative distance along the spillway and the effect of the normalized critical depth was negligible. Finally, the rate of energy dissipation was small, which has direct implications for the design of the downstream energy dissipator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call