Abstract
AbstractStratospheric sulfate injections from explosive volcanic eruptions are a primary natural climate forcing. Improved statistical models can now capture and simulate dynamical relationships in temporal variations of binary data. Leveraging these new techniques, the presented analysis clearly indicates that the number of large eruptions in the most recent records of explosive volcanism cannot be considered to be fully random. Including dynamical dependence in our models improves their ability to reproduce the historical record and thus forms a strong basis for skill in statistical prediction. Possible geophysical mechanisms behind the identified multidecadal variations are discussed, including variations in the observed length of day.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.