Abstract

AbstractAccumulated precipitation forecasts are of high socioeconomic importance for agriculturally dominated societies in northern tropical Africa. In this study, the performance of nine operational global ensemble prediction systems (EPSs) is analyzed relative to climatology-based forecasts for 1–5-day accumulated precipitation based on the monsoon seasons during 2007–14 for three regions within northern tropical Africa. To assess the full potential of raw ensemble forecasts across spatial scales, state-of-the-art statistical postprocessing methods were applied in the form of Bayesian model averaging (BMA) and ensemble model output statistics (EMOS), and results were verified against station and spatially aggregated, satellite-based gridded observations. Raw ensemble forecasts are uncalibrated and unreliable, and often underperform relative to climatology, independently of region, accumulation time, monsoon season, and ensemble. The differences between raw ensemble and climatological forecasts are large and partly stem from poor prediction for low precipitation amounts. BMA and EMOS postprocessed forecasts are calibrated, reliable, and strongly improve on the raw ensembles but, somewhat disappointingly, typically do not outperform climatology. Most EPSs exhibit slight improvements over the period 2007–14, but overall they have little added value compared to climatology. The suspicion is that parameterization of convection is a potential cause for the sobering lack of ensemble forecast skill in a region dominated by mesoscale convective systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call