Abstract

The present study tested the hypothesis that in motor sequences, the interval between successive movements is critical for the type of representation that develops. Participants practiced two 7-key sequences in the context of a discrete sequence production (DSP) task. The 0-RSI group practiced these sequences with response stimulus intervals (RSIs) of 0, which is typical for the DSP task, while the long-RSI group practiced the same sequences with unpredictable RSIs between 500 and 2000 ms. The ensuing test phase examined performance of these familiar and of unfamiliar sequences for both groups under both RSI regimes. The results support our hypothesis that the motor chunks that 0-RSI participants developed could not be used with long RSIs, whereas the long-RSI participants developed sequence representations that cannot be used with 0 RSIs. A new, computerized, sequence awareness task showed that long-RSI participants had limited sequence knowledge. The sequencing skill developed by long-RSI participants can, therefore, not have been based on explicit knowledge.

Highlights

  • Motor skills play a crucial role in our lives

  • This showed that the 0-response stimulus intervals (RSIs) group generally had shorter reaction time (RT) than the long-RSI group (351 vs. 541 ms), and that the RTs across serial positions followed different patterns for the two groups

  • To test whether each RSI group had developed a sequencing skill that they could use with unfamiliar sequences too, we examined whether each RSI group was faster reproducing the unfamiliar sequences in the RSI condition they had practiced with

Read more

Summary

Introduction

Motor skills play a crucial role in our lives. Skilled performance of tasks like car driving, playing video games, and playing soccer is possible only because people can develop behavioral “building blocks” that consist of fixed movement patterns to perform automated subtasks like shifting gears, dealing with recurring virtual enemies, and ball dribbling. Evidence for the use of such building blocks has been reported for various real-world tasks, such as typing (Viviani & Laissard, 1996; Yamaguchi, Crump, & Logan, 2012), video games (Thompson, McColeman, Stepanova, & Blair, 2017), and building LEGO walls (Arnold, Wing, & Rotshtein, 2017). These building blocks can be practiced in isolation in the situation that in the eventual task, they are kinematically independent (Fontana, Mazzardo, Furtado Jr, & Gallagher, 2009). Motor skills are often learned by the trainee observing and mimicking a human model who demonstrates the goal behavior (Badets & Blandin, 2005; Ellenbuerger, Boutin, Blandin, Shea, & Panzer, 2012; Wolpert, Diedrichsen, & Flanagan, 2011)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.