Abstract

We have assessed the ability of a common ocean biogeochemical model, PISCES, to match relevant modern data fields across a range of ocean circulation fields from three distinct Earth system models: IPSL-CM4-LOOP, IPSL-CM5A-LR and CNRM-CM5.1. The first of these Earth system models has contributed to the IPCC 4th assessment report, while the latter two are contributing to the ongoing IPCC 5th assessment report. These models differ with respect to their atmospheric component, ocean subgrid-scale physics and resolution. The simulated vertical distribution of biogeochemical tracers suffer from biases in ocean circulation and a poor representation of the sinking fluxes of matter. Nevertheless, differences between upper and deep ocean model skills significantly point to changes in the underlying model representations of ocean circulation. IPSL-CM5A-LR and CNRM-CM5.1 poorly represent deep-ocean circulation compared to IPSL-CM4-LOOP degrading the vertical distribution of biogeochemical tracers. However, their representations of surface wind, wind stress, mixed-layer depth and geostrophic circulations (e.g., Antarctic Circumpolar Current) have been improved compared to IPSL-CM4-LOOP. These improvements result in a better representation of large-scale structure of biogeochemical fields in the upper ocean. In particular, a deepening of 20-40 m of the summer mixed-layer depth allows to capture the 0-0.5 μgChl L-1 concentrations class of surface chlorophyll in the Southern Ocean. Further improvements in the representation of the ocean mixed-layer and deep-ocean ventilation are needed for the next generations of models development to better simulate marine biogeochemistry. In order to better constrain ocean dynamics, we suggest that biogeochemical or passive tracer modules should be used routinely for both model development and model intercomparisons.

Highlights

  • Earth system models are key to the IPCC assessment process but present multiple differences in term of resolution, subgrid-scale physics, and biogeochemical components

  • We present at first the ability of the Earth system models results to match the observed net heat flux (Qnet), incoming shortwave radiation (SW), and wind stress (s)

  • We show the maximum annual of mixed-layer depth (MLD, during winter) as well as its minimum

Read more

Summary

Introduction

Earth system models are key to the IPCC assessment process but present multiple differences in term of resolution, subgrid-scale physics, and biogeochemical components. These differences affect their simulated modern climate and future projections. When comparing ocean carbon models it is difficult to disentangle the main causes for disagreement because of their many differences, including resolution, parametrizations for subgrid-scale physics and biogeochemical components. This problem is exacerbated in Earth system models, where there are more model components, which differ as well

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call