Abstract

Scale mixtures of normal distributions are often used as a challenging class for statistical procedures for symmetrical data. In this article, we have defined a skewed version of these distributions and we have derived several of its probabilistic and inferential properties. The main virtue of the members of this family of distributions is that they are easy to simulate from and they also supply genuine EM algorithms for maximum likelihood estimation. For univariate skewed responses, the EM-type algorithm has been discussed with emphasis on the skew- t , skew-slash, skew-contaminated normal and skew-exponential power distributions. Some simplifying and unifying results are also noted with the Fisher information matrix, which is derived analytically for some members of this class. Results obtained from simulated and real data sets are reported, illustrating the usefulness of the proposed methodology. The main conclusion in reanalyzing a data set previously studied is that the models so far entertained are clearly not the most adequate ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.