Abstract
A D-structure on a ring A with identity is a family of self-mappings indexed by the elements of a monoid G and subject to a long list of rather natural conditions. The mappings are used to define a generalization of the monoid algebra A[G]. We consider two of the simpler types of D-structure. The first is based on a homomorphism from G to End(A) and leads to a skew monoid ring. We also explore connections between these D-structures and normalizing and subnormalizing extensions. The second type of D-structure considered is built from an endomorphism of A. We use D-structures of this type to characterize rings which can be graded by a cyclic group of order 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.