Abstract

We produce skew Pieri Rules for Hall–Littlewood functions in the spirit of Assaf and McNamara (FPSAC, 2010). The first two were conjectured by the first author (FPSAC, 2011). The key ingredients in the proofs are a q-binomial identity for skew partitions that are horizontal strips and a Hopf algebraic identity that expands products of skew elements in terms of the coproduct and antipode. Nous produisons quelques règles dissymètrique de Pieri pour les fonctions Hall–Littlewood au sens de Assaf et McNamara (FPSAC, 2010). Les premières deux règles ont ètè conjecturèe par le premier auteur (FPSAC, 2011). Les principaux ingrèdients dans les preuves sont une identitè q-binomiale pour les partitions dissymètrique qui sont bandes horizontales et une identitè de Hopf qui exprime les produits d'èlèments dissymètrique en termes du coproduit et de l'antipode.

Highlights

  • Let Λ[t] denote the ring of symmetric functions over Q(t), and let {sλ} and {Pλ(t)} denote its bases of Schur functions and Hall–Littlewood functions, respectively, indexed by partitions λ

  • We introduce the question via the recent answer for skew Schur functions sλ/μ

  • We introduce the basics in Subsection 2.1 and return to Λ[t] and Hall–Littlewood functions in Subsection 2.2

Read more

Summary

Notation and a key lemma

The conjugate partition of λ is denoted λc. We write mi(λ) for the number of parts of λ equal to i. If λ/μ is not a horizontal strip, define hsλ/μ(t) = 0. If λ/μ is not a vertical strip, define vsλ/μ(t) = 0. For a broken ribbon λ/μ, define brλ/μ(t) = (−t)ht(λ/μ)(1 − t)rib(λ/μ). If λ/μ is not a broken ribbon, define brλ/μ(t) = 0. Lemma 5 For fixed λ, μ, μ ⊆ λ, we have (−t)|λ/ν| vsλ/ν (t) skν/μ(t) = hsλ/μ(t), ν with the sum over all ν, μ ⊆ ν ⊆ λ, for which λ/ν is a vertical strip. We show that if λ/μ is not a horizontal strip and j is the largest index for which λcj − μcj ≥ 2, the term in the product (8) corresponding to j is 0

Elementary Hall–Littlewood identities
Hopf Perspective on Skew Elements
Hopf preliminaries
The Hall–Littlewood setting
Proofs of the main theorems
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call