Abstract

By introducing a twisted Hopf algebra we unify several important objects of study. Skew derivations of such an algebra are defined and the corresponding skew differential operator algebras are studied. This generalizes results in the Weyl algebra. Applying this investigation to the twisted Ringel–Hall algebra we get, in particular, a natural realization of the non-positive part of a quantized generalized Kac–Moody algebra, by identifying the canonical generators with some linear, skew differential operators. This also induces some algebras which are quantum-group like.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.