Abstract

In modern sequential VLSI designs, clock tree plays an important role in synchronizing different components in a chip. To reduce peak current and power/ground noises caused by clock network, assigning different signal polarities to clock buffers is proposed in previous work. Although peak current and power/ground noises are minimized by signal polarities assignment, an assignment without timing information may increase the clock skew significantly. As a result, a timing-aware signal polarities assigning technique is necessary. In this article, we propose a novel signal polarities assigning technique which can not only reduce peak current and power/ground noises simultaneously but also render the clock skew in control. The experimental result shows that the clock skew produced by our algorithm is 94% of original clock skew in average while the clock skews produced by three algorithms (Partition, MST, Matching) in the absence of post clock tuning steps in the previous work are 235%, 272%, and 283%, respectively. Moreover, our algorithm is as efficient as the three algorithms of the previous work in reducing peak current and power/ground noises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.