Abstract
In this paper we propose a two-stage method for recognizing sketched symbols that combine the use of a discriminative model, for labeling symbol strokes and a distance-based clustering algorithm, for grouping the labels belonging to the same symbol. In the first stage, we employ Latent-Dynamic Conditional Random Field (LDCRF), a discriminative model able to analyze the features of unsegmented sequences of strokes by taking into account spatio-temporal information, and to classify the symbol parts by considering contextual information. In the second stage, the labels obtained from LDCRF are grouped into symbol labels by using a distance-based clustering algorithm which takes into account the geometric relationships among strokes. The effectiveness of our method has been evaluated on the domain of electric circuit diagrams achieving accuracy values varying between 81.3% and 91.0%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.