Abstract
Emerging large-scale monitoring applications rely on continuous tracking of complex data-analysis queries over collections of massive, physically-distributed data streams. Thus, in addition to the space- and time-efficiency requirements of conventional stream processing (at each remote monitor site), effective solutions also need to guarantee communication efficiency (over the underlying communication network). The complexity of the monitored query adds to the difficulty of the problem -- this is especially true for nonlinear queries (e.g., joins), where no obvious solutions exist for distributing the monitor condition across sites. The recently proposed geometric method offers a generic methodology for splitting an arbitrary (non-linear) global threshold-monitoring task into a collection of local site constraints; still, the approach relies on maintaining the complete stream(s) at each site, thus raising serious efficiency concerns for massive data streams. In this paper, we propose novel algorithms for efficiently tracking a broad class of complex aggregate queries in such distributed-streams settings. Our tracking schemes rely on a novel combination of the geometric method with compact sketch summaries of local data streams, and maintain approximate answers with provable error guarantees, while optimizing space and processing costs at each remote site and communication cost across the network. One of our key technical insights for the effective use of the geometric method lies in exploiting a much lower-dimensional space for monitoring the sketch-based estimation query. Due to the complex, highly nonlinear nature of these estimates, efficiently monitoring the local geometric constraints poses challenging algorithmic issues for which we propose novel solutions. Experimental results on real-life data streams verify the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.