Abstract

Constructing efficient data structures (distance oracles) for fast computation of shortest paths and other connectivity measures in graphs has been a promising area of study in computer science [23, 24, 28]. In this paper, we propose very efficient algorithms, based on a distance oracle, for computing approximate shortest paths and alternate paths in road networks. Specifically, we adopt a distance oracle construction that exploits the existence of small separators in such networks. In other words, the existence of a small cut in a graph admits a partitioning of the graph into balanced components with a small number of inter-component edges. We demonstrate the efficacy of our algorithm by using it to find near optimal shortest paths and show that it also has the desired properties of well-studied goal-oriented path search algorithms such as ALT [12]. We further demonstrate the use of our distance oracle to produce multiple alternative routes in addition to the shortest path. Finally, we empirically demonstrate that our method, while exploring few edges, produces high quality alternates with respect to metrics such as optimality-loss and diversity of paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.