Abstract
A method for evaluating image segmentation methods is proposed in this paper. The method is based on a perception model where the drawing act is used to represent visual mental percepts. Each segmented image is represented by a minimal set of features and the segmentation method is tested against a set of sketches that represent a subset of the original image database, using the Mahalanobis distance function. The covariance matrix is set using a collection of sketches drawn by different users. The different drawings are demonstrated to be consistent across users. This evaluation method can be used to solve the problem of parameter selection in image segmentation, as well as to show the goodness or limitations of the different segmentation algorithms. Different well-known color segmentation algorithms are analyzed with the proposed method and the nature of each one is discussed. This evaluation method is also compared with heuristic functions that serve for the same purpose, showing the importance of using users' pictorial knowledge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEICE Transactions on Information and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.