Abstract

Current understanding of the molecular mechanisms underlying ketamine's antidepressant effect remains largely incomplete. Recent imaging studies provide evidence for ketamine effects on amygdalo-hippocampal. This study in mice aimed to investigate acute proteomic changes after ketamine administration in various brain regions including amygdala and hippocampus. One hour after administration of s-ketamine, the brain-region tissues of interest were dissected out and analyzed using label-free shotgun proteomics. The deep proteomic analysis of amygdala and hippocampus identified 89,526 peptides corresponding to 8000 proteins. The analysis revealed a pronounced proteomic signature of the acute ketamine effect in the amygdala. We anticipate that this proteomic dataset will improve understanding of the mechanism of action of ketamine and identification of new drug targets. SignificanceMajor depressive disorder (MDD) is the leading cause of global disability and it presents a significant challenge to human health. S-ketamine has been proposed as a rapid acting antidepressant and, indeed, the FDA recently approved it for treatment of resistant MDD. However, the mechanism of action of s-ketamine as an antidepressant is still elusive. In this context, we investigated the short-term proteomic changes after ketamine administration in mouse brain regions previously related to ketamine effects such as amygdala and hippocampus. We anticipate that this proteomic dataset will provide highly useful information to improve our understanding of the mechanism of action of ketamine and identification of new drug targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.