Abstract
This paper focuses on the challenging task of learning 3D object surface reconstructions from RGB images. Existing methods achieve varying degrees of success by using different surface representations. However, they all have their own drawbacks, and cannot properly reconstruct the surface shapes of complex topologies, arguably due to a lack of constraints on the topological structures in their learning frameworks. To this end, we propose to learn and use the topology-preserved, skeletal shape representation to assist the downstream task of object surface reconstruction from RGB images. Technically, we propose the novel SkeletonNet design that learns a volumetric representation of a skeleton via a bridged learning of a skeletal point set, where we use parallel decoders each responsible for the learning of points on 1D skeletal curves and 2D skeletal sheets, as well as an efficient module of globally guided subvolume synthesis for a refined, high-resolution skeletal volume; we present a differentiable Point2Voxel layer to make SkeletonNet end-to-end and trainable. With the learned skeletal volumes, we propose two models, the Skeleton-Based Graph Convolutional Neural Network (SkeGCNN) and the Skeleton-Regularized Deep Implicit Surface Network (SkeDISN), which respectively build upon and improve over the existing frameworks of explicit mesh deformation and implicit field learning for the downstream surface reconstruction task. We conduct thorough experiments that verify the efficacy of our proposed SkeletonNet. SkeGCNN and SkeDISN outperform existing methods as well, and they have their own merits when measured by different metrics. Additional results in generalized task settings further demonstrate the usefulness of our proposed methods. We have made our implementation code publicly available at https://github.com/tangjiapeng/SkeletonNet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.