Abstract
The North East area of Italy is an intensively farmed area, where the use of herbicides has increased dramatically during the last years. Some of the most detected herbicides are triazine compounds, such as: simazine (SIM), terbuthylazine (TBA), its degradation product desethyl-terbuthylazine (D-TBA) and other herbicides, such as metolachlor (MET). In this paper, the sensitivity of the diatom Skeletonema marinoi to the most detected herbicides (TBA, D-TBA, SIM and MET) was preliminarily studied. All the pollutants tested significantly inhibited the diatom growth and photosynthetic efficiency (from the concentration of 15μgL−1) with the exception of TBA which had the strongest effects on S. marinoi starting from the concentration of 5μgL−1. Consequently, cellular physiological responses to TBA exposure (1, 5, 10, 20 and 30μgL−1) were further studied at increasing temperature conditions (15, 20 and 25°C). Inhibition of growth rate and photosynthetic efficiency was observed earlier and determined by lower TBA levels than those affecting cell growth. These responses were significantly enhanced at increasing temperature conditions when growth rates were higher than those measured at 15°C. Carbon cell content increased in the cultures exposed to high concentrations of TBA (from 20μgL−1) compared to the controls, especially at high temperatures. Cell chlorophyll significantly increased from the added concentration of 10μgL−1 of TBA at all the temperatures and, as a consequence, also the Chl:C ratio significantly increased. The C:N ratio followed the pattern of nitrate uptake and was characterized, at all the temperatures, by low values during the lag phase in cultures with 20 and 30μgL−1 of TBA; in these conditions, in fact, the nutrient in the medium was exhausted later then in the controls. Only cultures exposed to 30μgL−1 of TBA at 25°C, which stopped to take up nutrients earlier and could not increase chlorophyll levels, did not display any growth capacity. This study shows that S. marinoi is affected by TBA concentrations lower than those affecting some harmful flagellate species frequently observed in the Adriatic Sea. Thus, it raises the question of the combined effects of herbicides pollution and high temperature pressures on phytoplankton composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.