Abstract

Skeleton-based action recognition has made great progress recently, but many problems still remain unsolved. For example, most of the previous methods model the representations of skeleton sequences without abundant spatial structure information and detailed temporal dynamics features. In this paper, we propose a novel model with spatial reasoning and temporal stack learning (SR-TSL) for skeleton based action recognition, which consists of a spatial reasoning network (SRN) and a temporal stack learning network (TSLN). The SRN can capture the high-level spatial structural information within each frame by a residual graph neural network, while the TSLN can model the detailed temporal dynamics of skeleton sequences by a composition of multiple skip-clip LSTMs. During training, we propose a clip-based incremental loss to optimize the model. We perform extensive experiments on the SYSU 3D Human-Object Interaction dataset and NTU RGB+D dataset and verify the effectiveness of each network of our model. The comparison results illustrate that our approach achieves much better results than state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.