Abstract

For a subspace arrangement over a finite field we study the evaluation code defined on the arrangements set of points. The length of this code is given by the subspace arrangements characteristic polynomial. For coordinate subspace arrangements the dimension is bounded below by the face vector of the corresponding simplicial complex. The minimum distance is determined for coordinate subspace arrangements where the simplicial complex is a skeleton. A few examples are presented with high minimum distance and dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.