Abstract

This letter presents an effective method to encode the spatiotemporal information of a skeleton sequence into color texture images, referred to as skeleton optical spectra, and employs convolutional neural networks (ConvNets) to learn the discriminative features for action recognition. Such spectrum representation makes it possible to use a standard ConvNet architecture to learn suitable “dynamic” features from skeleton sequences without training millions of parameters afresh and it is especially valuable when there is insufficient annotated training video data. Specifically, the encoding consists of four steps: mapping of joint distribution, spectrum coding of joint trajectories, spectrum coding of body parts, and joint velocity weighted saturation and brightness. Experimental results on three widely used datasets have demonstrated the efficacy of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.