Abstract
Despite the great progress in 3D pose estimation from videos, there is still a lack of effective means to extract spatio-temporal features of different granularity from complex dynamic skeleton sequences. To tackle this problem, we propose a novel, skeleton-based spatio-temporal U-Net(STUNet) scheme to deal with spatio-temporal features in multiple scales for 3D human pose estimation in video. The proposed STUNet architecture consists of a cascade structure of semantic graph convolution layers and structural temporal dilated convolution layers, progressively extracting and fusing the spatio-temporal semantic features from fine-grained to coarse-grained. This U-shaped network achieves scale compression and feature squeezing by downscaling and upscaling, while abstracting multi-resolution spatio-temporal dependencies through skip connections. Experiments demonstrate that our model effectively captures comprehensive spatio-temporal features in multiple scales and achieves substantial improvements over mainstream methods on real-world datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.