Abstract

Skeletal toxicity has been reported following exposure to polychlorinated biphenyl (PCB) mixtures. However, molecular mechanisms remain poorly understood. We exposed groups of male 4-5-week-old Sprague-Dawley rats to 3,3', 4, 4', 5-pentachlorobiphenyl (PCB 126), a dioxin-like coplanar PCB congener by a single i.p. injection of 5µmol/kg in soy oil vehicle or vehicle alone. After 4weeks, rats were euthanized. PCB exposure resulted in hypocalcemia (P < 0.05) and significant increases in serum PTH without changes in serum phosphorous. Hyperparathyroidism was accompanied by increased expression of mRNAs of vitamin D3 metabolizing cytochrome P450 enzymes CYP27B1 and CYP24 in the kidney (P < 0.05). PCB exposure also reduced body weight, serum IGF-1, and hepatic expression of mRNAs encoding the male-specific GH-pattern-regulated CYP2C11 and CYP3A2 relative to controls (P < 0.05). PCB exposure reduced long bone length, diameter, and surface area, but increased trabecular thickness and volume (P < 0.05). Serum osteocalcin (P < 0.05), a marker and a regulator of bone formation, was reduced, but PCB exposure had no effect on the bone resorption marker RatLaps. Exposure of human intestinal Caco-2 cells to 10-100nM PCB 126 in the presence of vitamin D3 resulted in inhibition of mRNAs for the calcium transporters TRPV6 and PMCA1b (P < 0.05). In addition, PCB 126 suppressed osteoblastogenesis in primary bone marrow mesenchymal stem cell cultures which was blunted by the AhR antagonist CH-223191. These data provide novel evidence that skeletal toxicity after exposure to PCB 126 is a result of disruption of calcium homeostasis and the GH-IGF-1 axis, and involves direct AhR-mediated effects on bone formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call