Abstract

PurposeTo investigate the improvement of prognostication of active bone metastatic burden by discriminating bone metastases from degenerative changes in hot foci, using skeletal standardized uptake values (SUVs) by quantitative bone single photon emission tomography/computed tomography (SPECT/CT) in patients with prostate cancer.MethodsWe investigated 170 patients with prostate cancer who underwent skeletal quantitative SPECT/CT using 99mTc-methylene-diphosphonate (MDP), through conjugate gradient reconstruction with tissue zoning, attenuation, and scatter corrections applied, called as CGZAS reconstruction, in a retrospective cohort study. The maximum, peak, and average SUVs (SUVmax, SUVpeak, and SUVave, respectively) were obtained for visually normal thoracic (T; n = 100) and lumbar (L; n = 140) vertebral bodies as controls, as well as for bone metastases (n = 126) and degenerative changes (n = 114) as hot foci. They were also correlated with age, body-weight, height, biochemistry data, and extent of disease (EOD). Discrimination accuracy of the SUVs for bone metastases in hot foci was evaluated by a patient-based and lesion-based receiver-operator characteristic curve (ROC) analysis.ResultsThe skeletal SUVmax was 7.58 ± 2.42 for T, 8.12 ± 12.24 for L, 16.73 ± 6.74 for degenerative changes, and 40.90 ± 33.46 for bone metastases. The SUVs of the bone metastasis group were significantly (p < 0.001) greater than of the other three groups. With disease extent, serum alkaline phosphatase and prostate specific antigen were increased, while SUVs for bone metastases were decreased in EOD grade 4. In ROC analyses for bone metastases by skeletal SUVs demonstrating the diagnostic accuracy of skeletal SUVs for discriminating bone metastasis from degenerative changes in hot foci, area under curves were 0.840, 0.817, and 0.845 in patient-based mode, and 0.932, 0.920, and 0.930 in lesion-based mode.ConclusionsThe skeletal SUVs by 99mTc-MDP SPECT/CT for active bone metastases were greater than those for degenerative changes in patients with prostate cancer, with a feasible discrimination accuracy in the hot foci. Therefore, skeletal SUVs, especially SUVmax, in quantitative bone SPECT/CT may be helpful indices for the prognostication of bone metastatic burden, improving discrimination of active bone osteoblastic metastases in patients with prostate cancer from frequently coexisting degenerative changes.

Highlights

  • Prostate cancer is a common malignancy and the sixth most common cause of cancerrelated mortality in the year 2015 among Japanese men (Miyoshi et al, 2015)

  • The aim of this study was to clarify the clinical utility of skeletal standardized uptake values (SUVs) for improving prognostication of active bone metastases, which were obtained by skeletal SPECT/CT scans and analysed using the CGZAS method

  • Inclusion criteria were: (1) first-time patients who underwent bone quantitative SPECT/CT because of suspected bone metastasis for completion of initial staging or restaging, usually showing more than intermediate risk, indicated by either high serum prostate-specific antigen (PSA > 10 ng/mL) or high Gleason’s score (GS > 7) or clinical stage >T2b on prostate biopsy; and (2) follow-up patients who had already been diagnosed with bone metastases from prostate cancer and received therapies for re-evaluation of bone metastases

Read more

Summary

Introduction

Prostate cancer is a common malignancy and the sixth most common cause of cancerrelated mortality in the year 2015 among Japanese men (Miyoshi et al, 2015). Bone metastasis is seen in more than 90% of patients with metastatic castration-resistant prostate cancer (mCRPC) and is an important cause of death (Klaassen et al, 2017). Bone scintigraphy is a prevailing diagnostic test for the detection of bone metastasis in patients with prostate cancer because of its high sensitivity, cumulative evidence for detection, and easy accessibility (Langsteger et al, 2016). Recent introduction of new therapies has focused on the subjective evaluation of the status of bone metastasis. A semi-quantitative measurement of the bone scan index (BSI) by automated methods has been applied to investigate bone metastasis status (Nakajima et al, 2017). A single photon emission tomography/computed tomography (SPECT/CT) technique has been employed in patients with prostate cancer (Helyar et al, 2010)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.