Abstract

Mucopolysaccharidosis VII (MPS VII) is an autosomal recessive, lysosomal storage disorder caused by β-glucuronidase (GUSB) deficiency, resulting in the accumulation of glycosaminoglycans (GAGs), in a variety of cell types. Severe, progressive skeletal pathology, termed dysostosis multiplex, is a prominent clinical feature of MPS VII. We have evaluated a gene therapy protocol for its efficacy in preventing the development and progression of bone pathology in MPS VII mice treated with a lentiviral vector at birth or at 7weeks. Two weeks after injections, high levels of vector expression were observed in liver, spleen and bone marrow and to a lesser extent in kidney, lung and heart. Widespread clearance of GAG storage was observed in somatic tissues of both groups and some clearance of neuronal storage was observed in mice treated from birth. Micro-CT analysis demonstrated a significant decrease in vertebral and femoral bone mineral volume, trabecular number, bone surface density and cortical bone thickness in both treatment groups. Lumbar and femoral bone lengths were significantly decreased in untreated MPS VII mice, while growth plate heights were increased and these parameters did not change upon treatment. Small improvements in performance in the open field and rotarod behaviour tests were noted. Overall, systemic lentiviral-mediated gene therapy results in a measurable improvement in parameters of bone mass and architecture as well as biochemical and enzymatic correction. Conversely, growth plate chondrocytes were not responsive to treatment, as evidenced by the lack of improvement in vertebral and femoral bone length and growth plate height.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.