Abstract
Isotopic labelling and chemical substitution support the proposition that the skeletal rearrangement for water loss from molecular protonated ions of t-butoxycyclohexane involves competition between three reaction pathways. The principal reaction pathway (83%) involves migration of the t-butyl group to the 2-(6-) position of the cyclohexyl ring with reciprocal hydrogen transfer. A second reaction pathway (12%) involves ring contraction followed by reciprocal exchange of the t-butyl group with the 2-(5-) hydrogen atom of the nascent cyclopentyl ring. The third reaction pathway (5%) involves rearrangement of a proton-bound complex to permit ipso attack by isobutene. Stereospecific substitutions indicate that the principal reaction pathway is susceptible to 1,3-diaxial interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.