Abstract

We studied if dehydrating exercise would reduce muscle water (H2Omuscle ) and affect muscle electrolyte concentrations. Vastus lateralis muscle biopsies were collected prior, immediately after, and 1 and 4 h after prolonged dehydrating exercise (150 min at 33 ± 1 °C, 25% ± 2% humidity) on nine endurance-trained cyclists (VO2max = 54.4 ± 1.05 mL/kg/min). Plasma volume (PV) changes and fluid shifts between compartments (Cl(-) method) were measured. Exercise dehydrated subjects 4.7% ± 0.3% of body mass by losing 2.75 ± 0.15 L of water and reducing PV 18.4% ± 1% below pre-exercise values (P < 0.05). Right after exercise H2Omuscle remained at pre-exercise values (i.e., 398 ± 6 mL/100 g dw muscle(-1)) but declined 13% ± 2% (342 ± 12 mL/100 g dw muscle(-1); P < 0.05) after 1 h of supine rest. At that time, PV recovered toward pre-exercise levels. The Cl(-) method corroborated the shift of fluid between extracellular and intracellular compartments. After 4 h of recovery, PV returned to pre-exercise values; however, H2Omuscle remained reduced at the same level. Muscle Na(+) and K(+) increased (P < 0.05) in response to the H2Omuscle reductions. Our findings suggest that active skeletal muscle does not show a net loss of H2O during prolonged dehydrating exercise. However, during the first hour of recovery H2Omuscle decreases seemly to restore PV and thus cardiovascular stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.