Abstract

An important assumption in 2D numerical models of skeletal muscle contraction involves deformation in the third dimension of the included muscle section. The present paper studies the often used plane strain description. Therefore, 3D muscle surface deformation is measured from marker displacements during isometric contractions at various muscle lengths. Longitudinal strains at superficial muscle fibers (−14±2.6% at L 0 , n=57) and aponeurosis (0.8±0.9% at L 0 ) decrease with increasing muscle length. The same holds for transverse muscle surface strains in superficial muscle fibers and aponeurosis, which are comparable at intermediate muscle length, but differ at long and short muscle length. Because transverse strains during isometric contraction change with initial muscle length, it is concluded that the effect of muscle length on muscle deformation cannot be studied in plane strain models. These results do not counteract the use of these models to study deformation in contractions with approximately −9% longitudinal muscle fiber strain, as transverse strain in superficial muscle fibers and in aponeurosis tissue is minimal in that case. Aponeurosis surface area change decreases with increasing initial muscle length, but muscle fiber surface area change is −11%, independent of muscle length. Assuming incompressible muscle material, this means that strain perpendicular to the muscle surface equals 11%. Taking the relationship between transverse and longitudinal muscle fiber strain into account, it is hypothesized that superficial muscle fibers flatten during isometric contractions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call