Abstract

Tissue and organ regeneration proceed in a coordinated manner to restore proper function after trauma. Vertebrate skeletal muscle has a remarkable ability to regenerate after repeated and complete destruction of the tissue, yet limited information is available on how muscle stem and progenitor cells, and other nonmuscle cells, reestablish homeostasis after the regenerative process. The genetic pathways that regulate the establishment of skeletal muscle in the embryo have been studied extensively, and many of the genes that govern muscle stem cell maintenance and commitment are redeployed during adult homeostasis and regeneration. Therefore, correlates can be made between embryonic muscle development and postnatal regeneration. However, there are some important distinctions between prenatal development and regeneration - in the context of the cells, niche, anatomy and the regulatory genes employed. The similarities and distinctions between these two scenarios are the focus of this review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.