Abstract

We determined the relationship of O2 transport (TO2) to O2 consumption (VO2) and to changes in cellular bioenergetics in an isolated blood-perfused rabbit hindlimb preparation (n = 8) during hypoxemia. The preparations were subjected to reductions in TO2 by progressively decreasing partial pressure of arterial O2 (PaO2). At each level of PaO2 we obtained simultaneous measures of arterial and venous blood gases, venous lactate concentration, and changes in the relative concentrations of inorganic phosphate, phosphocreatine, and ATP measured with 31P magnetic resonance spectroscopy. The ratio of the change in vascular resistance (R) to the corresponding decrease in TO2 was taken as an index of vascular autoregulation with hypoxemia. Linear and logarithmic functions were fitted by least squares to the TO2-VO2 data from each experiment. TO2-VO2 relationships were characterized as O2 conforming (linear function, n = 4) or O2 regulating (logarithmic function, n = 4), depending on the goodness of fit. Those preparations showing an O2-conforming pattern had higher control VO2 (2.42 +/- 0.14 vs. 1.66 +/- 0.19 ml.min-1.kg-1; P less than 0.05) and a lesser degree of vascular autoregulation (0.07 +/- 0.03 vs. 0.21 +/- 0.02; P less than 0.01) than the O2-regulating group. Decreases in VO2 were always accompanied by increases in inorganic phosphate and lactate and decreases in phosphocreatine, indicating O2 supply limitation and anaerobic ATP production. There was no evidence of cellular adaptation to hypoxia by decreasing energy needs or of VO2 limitation by the depletion of adenine nucleotides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.