Abstract
Development of acute insulin resistance represents a negative factor after surgery, but the underlying mechanisms are not fully understood. We investigated the postoperative changes in insulin sensitivity, mitochondrial function, enzyme activities, and release of reactive oxygen species (ROS) in skeletal muscle and liver in pigs on the 2nd postoperative day after major abdominal surgery. Peripheral and hepatic insulin sensitivity were assessed by D-[6,6-²H₂]glucose infusion and hyperinsulinemic euglycemic step clamping. Surgical trauma elicited a decline in peripheral insulin sensitivity (∼34%, P<0.01), whereas hepatic insulin sensitivity remained unchanged. Intramyofibrillar (IFM) and subsarcolemma mitochondria (SSM) isolated from skeletal muscle showed a postoperative decline in ADP-stimulated respiration (V(ADP)) for pyruvate (∼61%, P<0.05, and ∼40%, P<0.001, respectively), whereas V(ADP) for glutamate and palmitoyl-L-carnitine (PC) was unchanged. Mitochondrial leak respiration with PC was increased in SSM (1.9-fold, P<0.05) and IFM (2.5-fold, P<0.05), indicating FFA-induced uncoupling. The activity of the pyruvate dehydrogenase complex (PDC) was reduced (∼32%, P<0.01) and positively correlated to the decline in peripheral insulin sensitivity (r=0.748, P<0.05). All other mitochondrial enzyme activities were unchanged. No changes in mitochondrial function in liver were observed. Mitochondrial H₂O₂ and O₂·⁻ emission was measured spectrofluorometrically, and H₂O₂ was increased in SSM, IFM, and liver mitochondria (∼2.3-, ∼2.5-, and ∼2.3-fold, respectively, all P<0.05). We conclude that an impairment in skeletal muscle mitochondrial PDC activity and pyruvate oxidation capacity arises in the postoperative phase along with increased ROS emission, suggesting a link between mitochondrial function and development of acute postoperative insulin resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Endocrinology and metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.