Abstract

ObjectivePompe disease (glycogenosis type II) is caused by lysosomal alpha-glucosidase deficiency, which leads to a block in intra-lysosomal glycogen breakdown. In spite of enzyme replacement therapy, Pompe disease continues to be a progressive metabolic myopathy. Considering the health benefits of exercise, it is important in Pompe disease to acquire more information about muscle substrate use during exercise.MethodsSeven adults with Pompe disease were matched to a healthy control group (1:1). We determined (1) peak oxidative capacity (VO2peak) and (2) carbohydrate and fatty acid metabolism during submaximal exercise (33 W) for 1 h, using cycle-ergometer exercise, indirect calorimetry and stable isotopes.ResultsIn the patients, VO2peak was less than half of average control values; mean difference −1659 mL/min (CI: −2450 to −867, P = 0.001). However, the respiratory exchange ratio increased to >1.0 and lactate levels rose 5-fold in the patients, indicating significant glycolytic flux. In line with this, during submaximal exercise, the rates of oxidation (ROX) of carbohydrates and palmitate were similar between patients and controls (mean difference 0.226 g/min (CI: 0.611 to −0.078, P = 0.318) and mean difference 0.016 µmol/kg/min (CI: 1.287 to −1.255, P = 0.710), respectively).ConclusionReflecting muscle weakness and wasting, Pompe disease is associated with markedly reduced maximal exercise capacity. However, glycogenolysis is not impaired in exercise. Unlike in other metabolic myopathies, skeletal muscle substrate use during exercise is normal in Pompe disease rendering exercise less complicated for e.g. medical or recreational purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call