Abstract

Ca(2+) release from internal stores is critical for mediating both normal and pathological intracellular Ca(2+) signaling. Recent studies suggest that the inositol 1,4,5-triphosphate (IP(3)) receptor mediates Ca(2+) release from internal stores upon cholinergic activation of the neuromuscular junction (NMJ) in both physiological and pathological conditions. Here, we report that the type I IP(3) receptor (IP(3)R(1))-mediated Ca(2+) release plays a crucial role in synaptic gene expression, development, and neuromuscular transmission, as well as mediating degeneration during excessive cholinergic activation. We found that IP(3)R(1)-mediated Ca(2+) release plays a key role in early development of the NMJ, homeostatic regulation of neuromuscular transmission, and synaptic gene expression. Reducing IP(3)R(1)-mediated Ca(2+) release via siRNA knockdown or IP(3)R blockers in C2C12 cells decreased calpain activity and prevented agonist-induced acetylcholine receptor (AChR) cluster dispersal. In fully developed NMJ in adult muscle, IP(3)R(1) knockdown or blockade effectively increased synaptic strength at presynaptic and postsynaptic sites by increasing both quantal release and expression of AChR subunits and other NMJ-specific genes in a pattern resembling muscle denervation. Moreover, in two mouse models of cholinergic overactivity and NMJ Ca(2+) overload, anti-cholinesterase toxicity and the slow-channel myasthenic syndrome (SCS), IP(3)R(1) knockdown eliminated NMJ Ca(2+) overload, pathological activation of calpain and caspase proteases, and markers of DNA damage at subsynaptic nuclei, and improved both neuromuscular transmission and clinical measures of motor function. Thus, blockade or genetic silencing of muscle IP(3)R(1) may be an effective and well tolerated therapeutic strategy in SCS and other conditions of excitotoxicity or Ca(2+) overload.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.